The fourth edition of our mini-conference will happen on July 29th in Zoom!

The conference is organized by Denis Nardin and me.

The videos of the past talks can be found at our Youtube channel.

If you haven't filled a registration form for a previous edition of our conference,

please fill by July 28th this short Google form.

The schedule in Central European Summer Time (aka time in Germany):

11:50-12:00 Conference opening

12:00-13:00 Sabrina Pauli

13:00-13:30 coffee break

13:30-14:30 Doosung Park

14:30-16:30 siesta

16:30-17:30 Tariq Syed

17:30-18:00 coffee break

18:00-19:00 Akhil Mathew

Akhil Mathew (Chicago): On K(1)-local
TR

Abstract: The K(1)-localization of algebraic K-theory was first studied by Thomason, who showed that it is filtered by
étale cohomology under mild hypotheses. Using some recent advances in the theory of topological Hochschild homology and cyclotomic spectra, I will explain some general properties
of K(1)-local TR and an analog of Thomason's result in this context.

Doosung Park (Zurich): Triangulated categories of logarithmic motives over a field

Abstract: There are many non A^{1}-invariant cohomology theories like Hodge cohomology theories. To incorporate these in the
framework of triangulated categories of motives, we can instead use a compactification of A^{1} in logarithmic geometry, which we call Cube. One technical problem is that Cube does
not admit a multiplication map, so Cube is not an interval object in the sense of Morel and Voevodsky. In particular, the naive Sing functor is not useful. In this talk, I will explain how
to construct a Sing functor for Cube that can be used to compare Voevodsky's motives and logarithmic motives.

Sabrina Pauli (Oslo): Quadratic dynamic
and excess intersection

Abstract: One can view Fulton and MacPherson's intersection product of an excess intersection as a limit of proper
intersections. In my talk I will introduce a quadratic version of this dynamic process to compute excess intersections in oriented Chow. As an application, I will compute several
Euler numbers valued in GW(k), for example the count of lines on a quintic threefold expressed as the sum of local contributions of the lines on the Fermat quintic threefold that
deform with a generic deformation.

Tariq Syed (Essen): The cancellation of
projective modules of rank 2 with a trivial determinant

Abstract: I will begin with a brief survey of the results on the cancellation problem of projective modules over commutative rings (i.e.
algebraic vector bundles on affine schemes). Motivated by this, I will introduce the generalized Vaserstein symbol and explain its applications to the cancellation problem and the generalized
Serre question on algebraic vector bundles.